

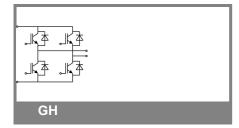
IGBT Module

10D1 Wodan

SK30GH123

Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings			T _s = 25 °C, unless otherwise specified			
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 125 °C	T _s = 25 °C	33	Α		
		T _s = 80 °C	22	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		50	Α		
$V_{\rm GES}$			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs		
Inverse D	iode					
I _F	T _j = 150 °C	T _s = 25 °C	37	Α		
		T _s = 80 °C	25	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	350	Α		
Module						
I _{t(RMS)}				Α		
T_{vj}			-40 + 150	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,15	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			120	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,2		V
		T _j = 125 °C		1,2		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		52		mΩ
		T _j = 125°C		76		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				1,65		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,25		nF
C _{res}				0,11		nF
$t_{d(on)}$				65		ns
t _r	$R_{Gon} = 47 \Omega$	$V_{CC} = 600V$		100		ns
E _{on}	$R_{Goff} = 47 \Omega$	I _{Cnom} = 25A T _i = 125 °C		3,5 430		mJ ns
$egin{aligned} t_{ ext{d(off)}} \ t_{ ext{f}} \end{aligned}$	Goff - 47 52	V _{GE} =±15V		35		ns
E _{off}		GE = 1-1		2,5		mJ
R _{th(j-s)}	per IGBT				1	K/W

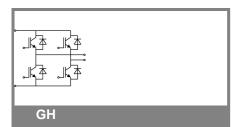
IGBT Module

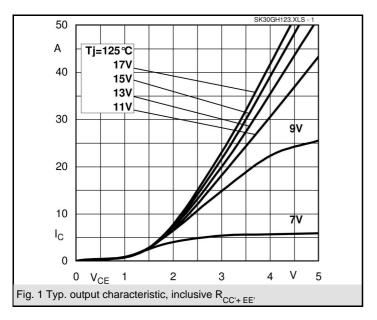
SK30GH123

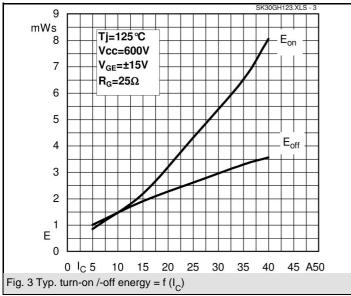
Preliminary Data

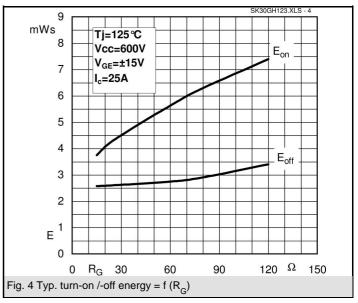
Features

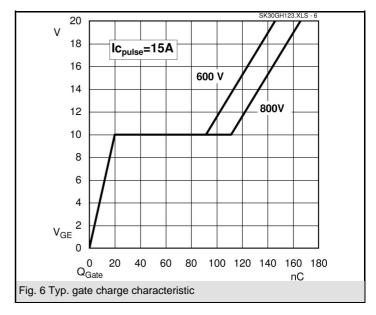
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

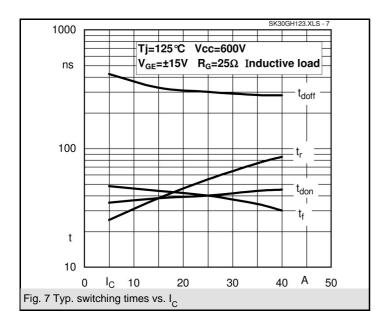

Typical Applications

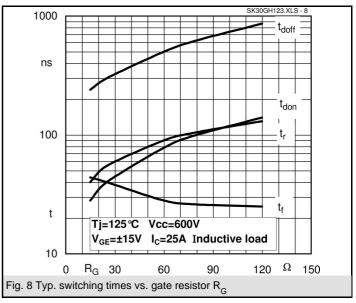

- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS

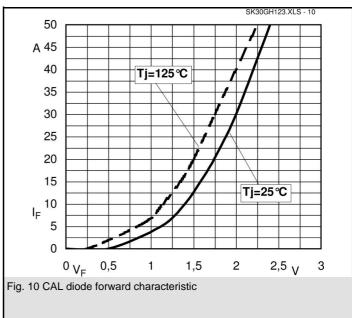

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	Diode					•		
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V		
V _{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		32	44	mΩ		
I _{RRM}	I _{Fnom} = 2 A	T _j = 125 °C		25		Α		
Q_{rr}	$di/dt = -500 A/\mu s$			4,5		μC		
E _{rr}	V _{CC} = 600V			1		mJ		
R _{th(j-s)D}	per diode				1,2	K/W		
M_s	to heat sink M1		2,25		2,5	Nm		
w				30		g		

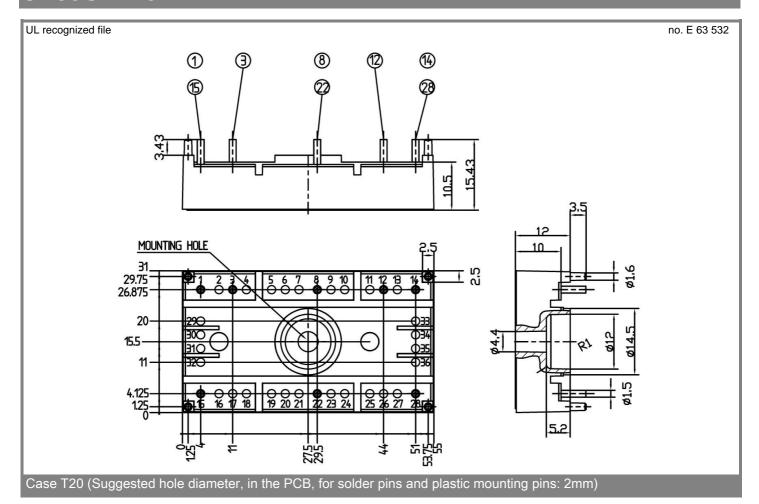

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

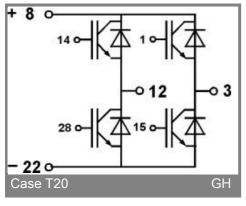

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.











5 30-10-2006 DIL © by <u>SEMIKRON</u>